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ABSTRACT
Many real-world prediction tasks have outcome (a.k.a. target or re-
sponse) variables that have characteristic heavy-tail distributions. Ex-
amples include copies of books sold, auction prices of art pieces, etc.
By learning heavy-tailed distributions, “big and rare” instances (e.g.,
the best-sellers) will have accurate predictions. Most existing ap-
proaches are not dedicated to learning heavy-tailed distribution; thus,
they heavily under-predict such instances. To tackle this problem,
we introduce Learning to Place (L2P), which exploits the pairwise
relationships between instances to learn from a proportionally higher
number of rare instances. L2P consists of two stages. In Stage 1,
L2P learns a pairwise preference classifier: is instance A > instance
B?. In Stage 2, L2P learns to place a new instance into an ordinal
ranking of known instances. Based on its placement, the new in-
stance is then assigned a value for its outcome variable. Experiments
on real data show that L2P outperforms competing approaches in
terms of accuracy and capability to reproduce heavy-tailed outcome
distribution. In addition, L2P can provide an interpretable model
with explainable outcomes by placing each predicted instance in
context with its comparable neighbors.

KEYWORDS
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1 INTRODUCTION
We address the problem of predicting the value of a heavy-tailed
outcome (a.k.a. target or response) variable in a supervised setting.
By heavy-tailed, we mean a variable whose distribution has a heavier
tail than the exponential distribution. Examples include predicting
bestselling books, art auction price, detecting rare events [24, 26, 37]
and viral content [30, 39, 41]. In most models, such instances are
considered anomalies. For example, the start-up industry often refers
to such big and rare instances as unicorns.

When predicting for heavy-tailed outcomes, traditional approaches
produce large errors on the rare instances at the tail of the distri-
bution (by under-predicting such instances). The limiting factor
for prediction performance is the insufficient amount of training
data on the rare instances. Collecting more data is not a solution to
this problem because these instances are rare. Approaches such as
over-sampling training instances [6], adjusting weights, and adding
extra constraints [8, 13, 22, 28, 32, 40] do not properly address the
aforementioned problem because they were introduced to address
the class imbalance problem, which is different from predicting
heavy-tailed distributed outcomes.

Existing classification and regression approaches for imbalanced
data mostly assume groups of homogeneously distributed instances

with proportionally different sizes. Separating instances from differ-
ent groups is relatively easier since within group and between group
distances can be significantly different. Higher-order moments and
variance of heavy-tailed distributions are not well-defined. Thus,
statistical methods with assumptions on the outcome distribution’s
variance lead to biased estimates on such data. In addition, defin-
ing distinct groups on a dataset with heavy-tailed outcomes is not
trivial. Therefore, predicting the values of heavy-tailed variables is
not merely a class imbalance problem; instead it is the problem of
learning a heavy-tailed distribution.

Here, we propose a novel approach called Learning to Place
(L2P) to estimate heavy-tailed outcomes and define performance
measures for heavy-tailed target variables, while addressing the
known limitations of previous methods such as under-prediction
of the rare instances [22] and limitations of traditional regression
performance measurements. Our approach learns to estimate a heavy-
tailed distribution by first learning pairwise preferences between the
instances and then placing new (i.e., never-before-seen) instances
into the ordinal ranking of the known instances and generating a
value for their outcome variables. Our contributions are as follows:

• We introduce Learning to Place (L2P) to estimate heavy-
tailed outcomes by learning from the pairwise relationships
between instances and placing the new instance into per-
spective with known samples from training data and predict
outcomes. L2P produces interpretable models by providing
additional context on relative relations with training instances
and their features.
• We propose appropriate statistical metrics to measure the per-

formance of heavy-tail distribution learning task and support
performance of models by employing visual analysis.
• In an exhaustive empirical study, we demonstrate that L2P

is robust, and consistently outperforms various competing
approaches across diverse real-world datasets.

The outline of the paper is as follows. We describe L2P next. In
Section 3, we present the experiments, followed by related work and
discussion in Section 4. We conclude the paper in Section 5.

2 PROPOSED METHOD: LEARNING TO
PLACE (L2P)

Our approach, L2P, takes as input a data matrix where the rows are
data instances (e.g., books) and the columns are features that describe
each instance (e.g., author, publisher, etc). Each data instance also
has a value for the predefined target variable (e.g., copies of book
sold). L2P learns to map each instance’s feature vector to the value
for its target variable. This is the standard supervised learning setup.
However, the challenges that L2P addresses are as follows. First, it
learns the heavy-tailed distribution of the target variable; and thus
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Figure 1: Learning to place (L2P) schema. Other than directly predicting the target variable, here we compare instances pairwise
and predict the value based on the pairwise relationship. In the training phase, we train a classifier C on the pairwise relationship
between each pair of train instances. In the testing phase, when a new (test) instance q coming in, we apply the classifier C on the
test instance against all train instances and obtain the pairwise relationship between q and all train instances. Then, each instance
in the training dataset contributes to the placement of testing instance q by voting on bins to its left or to its right depending on the
estimated relation between instances. The middle value of the bin having the maximum vote is the prediction for the test instance.

it does not under-predict the “big and rare” instances. Second, it
generates an interpretable model for the human end-user (e.g., a
publisher) to employ; that is, the human end-user can interpret the
reasoning behind the model.
L2P algorithm like any other supervised model learns from data

and uses models learned in this phase to predict outcomes for a
given test instances. In the training phase, L2P learns a pairwise
relationship classifier, which predicts whether the target variable for
an instance A is greater (or less) than another instance B. To predict
outcomes in the testing phase, the new instance is compared with
each training instances using the model learned in the training phase
to predict pairwise relations. Those pairwise relations later use as
“votes” to predict target outcomes. The detailed training and testing
phase is described as follows and graphically in Figure 1:

Training Phase (Algorithm 1). For each pair of instances i and
j with feature vector fi and fj , L2P concatenates the two feature
vectors Xi j = [fi , fj ]. If i’s target variable is greater than j’s, then
yi j = 1; otherwise, yi j = −1 (ties are ignored in the training phase).
Formally, denoting with ti the target variable for instance i and with
S the set of instances in the training set, L2P generates the following
training data:

Xi j = [fi , fj ], for each(i, j) ∈ S × S, i , j , ti , tj , (1)

yi j =

{
1, ti > tj

−1, ti < tj
. (2)

Then a classifier C is trained on the training data Xi j and labels
yi j .1 It is important to note that the trained classifier may produce
conflicting results; for example, A < B and B < C but C < A.
In the Experiments section, we discuss the robustness of L2P to
such conflicts caused by the misclassification of the binary classifier
learned in this phase.

1Having a single (i, j) pair or training on symmetric pairs (including both (i, j) and
(j, i) do not lead difference on model performance.

Testing Phase (Algorithm 2). The testing phase consists of two
stages. In Stage I, for each test instance q L2P obtains Xiq =
[fi , fq ], for each i ∈ S (recall S is the training set). Then, L2P ap-
plies the classifierC on Xiq to get the predicted pairwise relationship
between the test instance q and all training instances (ŷiq = C(Xiq )).
In Stage II (the estimate placement for test instance stage), L2P
treats each training instance as a “voter”. Training instances (voters)
are sorted by their target variables in descending order, dividing
the target variable axis into bins. If ŷiq = 1, bins on the right of ti
will obtain an upvote (+1) and bins on the left of ti will obtain a
downvote (-1). If ŷiq = −1, i will upvote for bins on the left of ti
and downvote for bins on the right of the ti . After the voting process,
L2P obtains a voting distribution over the bins. It then takes the bin
with the most “votes” as the predicted bin for test instance q, and
obtains the prediction t̂q as the midpoint of this bin.

We prove that L2P’s voting process is the maximum likelihood
estimation (MLE) of the optimal placement of an instance based on
the pairwise relationships. Given the test instance q, our goal is to
find its optimal binm. For any bin b, we have: P(b |q) ∝ P(q |b)×P(b).
Since each train instance i contributes to P(q |b), we have

P(q |b) =
1
Z

∑
i ∈Strain

Pi (q |b), (3)

where Pi (q |b) is the conditional probability of test instance q placing
in the given bin b based on its pairwise relationship with training
instance i; and Z is the normalization factor, Z =

∑
b
∑
i Pi (q |b).

L2P assigns two probabilities to each pair of training instance i
and test instance q: pli (q) and pri (q), which respectively denote the
probability that the test instance q is smaller than (i.e., to the left
of) or larger than (i.e., to the right of) training instance i. Obviously,
pli (q) + p

r
i (q) = 1. Let Rib ∈ {l , r } be the region defined by training

instance i for bin b, and |Rib | as the number of bins in this region.
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Algorithm 1: Training phase of L2P
Input: Training data S consisting of feature matrix F and target

variable vector t
Output: Pairwise relationship classifier C
X = [ ]; // Concatenated feature matrix

y = [ ]; // Label vector

for i ← 1 to |S | do
for j ← i + 1 to |S | do

X .append([fi , fj ]); // Concatenate

if ti > tj then
y.append(1);

else if ti < tj then
y.append(-1);

end
end
C.train(X , y); // Train a model
return C

We know that

Pi (q |b) =
p
Rib
i (q)

|Rib |
(4)

assuming the test instance is equally probable to fall in each bin in
region Rim . Therefore, the optimal bin

m = argmax
b

1
Z

∑
i ∈S

p
Rib
i (q)

|Rib |
. (5)

We observe that
p
Rib
i (q)
|Rib |

is actually the “votes" the training instance i

gives to bin b for test instance q, therefore the optimal binm is the
one with the most “votes". Notice that by using upvotes (+1) and
downvotes (-1) in our approach, we are basically standardizing pli (q)
and pri (q).
L2P can incorporate any method that takes pairwise preferences

and learns to place a test instance among the training instances. Be-
sides voting, we experimented with other approaches to estimate
placement of a test instance. Specifically, we examined SpringRank [11],
FAS-PIVOT [2] and tournament graph related heuristics [10]. We
found that the performances of these approaches are quite similar to
voting. However, voting – with its linear runtime complexity – is the
most efficient method among them.

Complexity analysis. The training phase of L2P requires learning
pairwise relationship of all the pairs in the training set, leading to a
O(n2) complexity. Since this is computationally expensive for large
dataset [33], we later discuss techniques to reduce the number of
pairs needed for the classifier. The testing phase hasO(n) complexity.

3 EXPERIMENTS
We study the performance of L2P in various datasets. In this section,
we describe the data used in our experiments, the baseline and com-
peting approaches, our experimental methodology and evaluation
metrics to introduce concepts required to interpret our experimental
results in the following section.

Algorithm 2: Testing phase of L2P
Input: Classifier C, Training data S=(F , t), Test instance q

represented by its features fq
Output: tq = predicted value for test instance q
B = [ ]; // Vote counter

bins = sort(unique(t)); // Unique target values,

highest to lowest

for i ← 1 to |bins| do
B[i] = 0;

end
for i ← 1 to |F | do

ŷiq = C .predict([fi , fq ]);
for j ← 1 to BinEdgeIndex(ti ) - 1 do

B[j] -= ŷiq ; // Vote preceding bins

end
for j ← BinEdgeIndex(ti ) to |B | do

B[j] += ŷiq ; // Vote subsequent bins

end
end
b = GetHighestBin(B); // MLE over bins

tq = Mean(bins[b-1], bins[b]); // Get prediction
return tq

3.1 Datasets
We present results on four real-world applications – prediction of
book sales, artwork auction prices, COMPAS recidivism risks, and a
synthetic network dataset. Table 1 provides the summary statistics
of these datasets. Specifically, we calculate the kurtosis for each
target variable. Kurtosis measures the “tailedness" of the probability
distribution of a real-valued random variable. The kurtosis of any
univariate normal distribution is 3, and the higher the kurtosis is, the
heavier the tails. Distribution of real outcomes are also presented as
complementary cumulative function (CCDF) in Fig. 2. Real-world
datasets exhibit at least two order of magnitude difference between
extreme values of the distribution.

Book sales: This dataset consists of information about all print
nonfiction books published in the United States in 2015, including
details about authors publication history, a summary of the book, as
well as Wikipedia pageviews as a proxy to authors popularity [41].
The goal is to predict the book sales using the given features prior to
the book’s publication [12].

Art auctions: This dataset was collected by a company operating
in the art world that combines information on artists exhibits, auction
sales, and primary market quotes. It was previously used to quantify
success of artists based on their trajectories of exhibitions [14]. We
only select the paintings in the dataset and sampled 7,764 from them
using vertical logarithmic binning [17]. Here we try to predict auc-
tion sale of an art piece based on artists previous sale and exhibition
history.

COMPAS recidivism: We use the COMPAS (Correctional Of-
fender Management Profiling for Alternative Sanctions) dataset re-
leased by ProPublica2 for our analysis. This dataset records criminal

2https://github.com/propublica/compas-analysis

https://github.com/propublica/compas-analysis


Xindi Wang, Onur Varol, and Tina Eliassi-Rad

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Value

10
4

10
3

10
2

10
1

10
0

C
C

D
F

Fiction
Nonfiction
Art
COMPAS
Synthetic

Figure 2: Distribution of target variables presented for each
dataset. Heavy-tailed nature of those distribution and satura-
tion on smaller values can be seen from the distributions.

Table 1: Dataset summary statistics and measure of “tailedness”
by kurtosis of the target distributions.

Name Instances Features Target Variable Kurtosis
Fiction 2,061 55 Book sales 443.08

Nonfiction 7,641 55 Book sales 619.73
Art 7,764 21 Sale price 597.82

COMPAS 5,061 16 Inter-crime time 40.58
Synthetic 4,096 9 Node degree 36.40

defendants in Broward County, Florida, including information such
as demographics and the individual’s past criminal record [12]. The
goal is to predict the time between adjacent crimes (inter-crime time)
based on features regarding the defendant’s crime history.

Synthetic dataset: In addition to the real-world datasets, we
generate a network with heavy-tail degree distribution using the Mul-
tiplicative Graph Model [21], where nodes are assigned to attribute
vectors. The goal is to predict the degree of a node based on its
attribute vector.

3.2 Baseline and Competing Approaches
To compare the predictive capabilities of L2P, we experiment with
other competing approaches from the literature.

K-nearest neighbors regression (kNN): We employ regression
based on k-nearest neighbors. In this model, target variable is pre-
dicted by local interpolation of the targets associated with the nearest
neighbors in the training set. We consider 5 neighbors (k = 5) and
Euclidean distance between instances.

Kernel regression (KR): Since the dataset might have non-linear
relations, we employ Ridge regression with a RBF kernel to estimate
non-linear relation between coveriates and target variable.

Heavy-tail linear regression (HLR): Hsu et al. [19] proposed
heavy-tail regression model, in which a median-of-means technique

is utilized. They proved that a random sample of size Õ(dloд(1/δ ))
is sufficient to obtain a constant factor approximation to the optimal
loss with probability 1 − δ . However, this approach is not able to
capture non-linear relationships, which exist in our setting.

Neural networks (NN): We train a multi-layer perceptron regres-
sor with one hidden layer of 100 neurons and with a regularization
term α = 0.0001 added to the loss function that shrinks model param-
eters to prevent overfitting. Adam solver [23] is used to minimize
the squared-loss and optimize model parameters. However, neural
networks are in general not interpretable.

XGBoost (XGB): Efficient and scalable implementation of gra-
dient boosting proposed by Friedman et al. [15] and it has been
optimized to perform tree boosting approach to various tasks such
as regression, classification and ranking [9].

RankSVM: Joachims [20] introduced RankSVM, which is a two-
stage approach. It translates optimization of learning weights for
ranking functions into an SVM classification problem. RankSVM is
designed to predict the ranking among a list of items; here we adjust
it by directly computing predicted value as the midpoint between
the actual values of adjacent ranked items.3 However, RankSVM is
a computationally expensive approach in both training and testing,
since the testing phase is ranking all the train instances plus the test
instance into an ordinal ranking, which requires O(n2) complexity.

Random (RDM): We define a random baseline as the actual
outcomes are shuffled at random and assigned as predictions.

3.3 Experimental Setup and Evaluation Metrics
For all results presented in this work, we follow the same experi-
mental setting and evaluation metrics. We employ 5-fold stratified
cross-validation to estimate confidence of model performance. For
L2P, we choose random forest classifier with 100 trees and Gini
impurity as split criteria to learn pairwise preferences. Like others,
we find that random forest has good performance (does not overfit)
and provides interpretablity of features and results.

In this work, we emphasize importance on learning heavy-tailed
outcome distributions. Traditional regression metrics are not of good
fit in this problem setting. For example R2 is calculated under the as-
sumption that the error is normally distributed, which is not the case
for heavy tailed distributions; root mean square error (RMSE) will be
dominated by the errors on the high end since the values on high-end
are extreme. Other statistical metrics such as Mann-Whitney statis-
tics and rank correlations also biased due to ties between instances
at the lower-end.

Under our problem definition, the model with the best perfor-
mance will (i) reproduce heavy-tailed outcome distribution, (ii) pre-
dict all instances accurately especially at the tail of distribution.
Therefore, we have the following metrics that fit better under our
circumstances for evaluation:

Quantile-quantile (Q-Q) plot: Q-Q plot can visually present the
deviations between true and predicted target variable distributions.
In addition, we can also investigate parts of distributions contributing
to deviations.

Kolmogorov–Smirnov statistic (KS): Kolmogorov–Smirnov statis-
tic is a commonly used statistic to measure the distance between
two underlying one-dimensional probability distributions. Since our

3RankSVM code is obtained from https://gist.github.com/fabianp/2020955.

https://gist.github.com/fabianp/2020955
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goal is to predict attributes that are heavy-tailed distributed, methods
should be able to recover the true distribution of the actual values.
Therefore, we calculate the two-sample Kolmogorov–Smirnov statis-
tic between the predicted values and the true values. A better method
will have smaller Kolmogorov–Smirnov statistic.

Earth mover distance (EMD): Similar to Kolmogorov–Smirnov
statistic, EMD (also called Wasserstein metric) is another commonly
used statistic to measure distance between two distributions. Small
earth mover distance indicates higher similarity between distribu-
tions and in our analysis better reproducing underlying distribution.

Receiver operating characteristic (ROC): We calculate true
positive rates and false positive rates introduced below to compute
ROC curve and the corresponding area under the curve (AUC) score.
Traditional way of calculating ROC and corresponding AUC lies
in the classification space. Here, we adapt it to regression setting
by calculating true positive rate and false positive rate at different
threshold (all possible actual values in our case), and obtain the
curve and corresponding AUC.

True positive rate at threshold. The calculation of true positive
rate (TPR) at threshold follows the fashion of the metric recall@k
frequently used in information retrieval literature. Here, we investi-
gate whether an instance with true value (y) higher than threshold t
actually be predicted (ŷ) to be higher than t .

TPR@t =
|{ŷi ≥ t ,yi ≥ t}|

|{yi ≥ t}|
.

False positive rate at threshold. Similar to TPR at threshold, one
can calculate false positive rate at threshold as:

FPR@t =
|{ŷi ≥ t ,yi < t}|

|{yi < t}|
.

For various thresholds, we can compute corresponding TPR and
FPR scores to create ROC curve. Similar to traditional ROC curve, a
better performing method would have a curve that is simultaneously
improving both true positive rate and false positive rate, leading to a
perfect score of AUC = 1. A random model leads to a performance
of AUC = 0.5 and corresponding ROC curve aligns with 45-degree
line indicating that TPR and FPR are equal for various thresholds.

We also want to note that each individual measure is not sufficient
enough to judge the goodness of a model. KS, EMD and Q-Q plot
are measuring the reproducibility of the heavy-tailed distribution,
but are not able to measure the prediction accuracy for each instance.
AUC is measuring the accuracy of the prediction, but didn’t take
into account model’s ability to reproduce the distribution.

3.4 Results
Here, we present the experimental results of L2P in comparison with
different baseline algorithms. We present our experimental results on
various datasets. In particular, we show performance comparisons,
robustness analysis, and case studies to illustrate interpretability of
L2P outcomes.

3.4.1 Performance comparison study. Here we present perfor-
mance of L2P and other competing methods using metrics that we
proposed above.

Q-Q plot. We investigate distribution of predicted outcomes pre-
sented in Fig. 3. Best performing models in this analysis should

produce curve closer to y = x line and we can study when predicted
quantiles deviate from this line. In all datasets except synthetic,
we see deviation at the high-end. In Fiction, L2P is among the
top 3 methods that produce the smallest deviation from the high
end; the other two are RankSVM and Neural Network, but they
produce larger deviation at low end than L2P. In nonfiction, L2P
produces the least deviations on both low and high ends. In art
dataset, RankSVM and L2P produce least deviation on the high
end but L2P has lower deviation at the low end than RankSVM.
Performance on COMPAS dataset is challenging for all methods.
They exhibit deviations on lower and higher values, while in the
mid-range RankSVM and L2P achieves best performance. Finally
on the simple synthetic dataset, all methods produce similar results.

KS and EMD. To quantify differences between distributions of
predicted outcomes and target values, we compute KS statistics and
earth-mover distance and results are presented in Table 2. CCDF of
the outcome distributions against actual distributions for selected
methods are shown in Figure 4. Outcomes of L2P leads the smallest
KS statistics for almost all datasets (except COMPAS). RankSVM
shows an advantage on minimizing EMD as well as visually com-
paring with the actual distribution. However, we want to note that
reproducing distribution of true outcome is not sufficient to evaluate
models by itself, since error between predicted and true values are
not directly measured by these metrics.

AUC. To quantify performance of models using the prediction
errors, we calculate the AUC measure introduced earlier. Perfor-
mance of models on different datasets summarized in Fig. 5. In
this comparison, L2P achieves the best performance 0.895 ± 0.002
and 0.872 ± 0.005 AUC score on fiction and nonfiction datasets re-
spectively. Experiment on art dataset points similar performance
of AUC 0.821 ± 0.007 but differences between top four methods
are statistically insignificant. We notice that RankSVM, which has
good performance under KS and EMD, has very low AUC score,
indicating its inability to have accurate prediction on each instance.
Synthetic dataset is a simple dataset compared to the real datasets
(less features and smaller kurtosis) and all methods achieves compa-
rable performance on it.

Summary. With comprehensive consideration of all three evalua-
tions, we can see that L2P is the best method in both reproducing
the underlying heavy-tail distribution and providing accurate predic-
tions. We also observe that for the three most heavy-tailed datasets –
fiction, nonfiction and art, L2P is the method having the highest per-
formance, which shows the power of L2P on heavy-tail distributed
outcomes; for the less heavy-tailed dataset COMPAS and synthetic,
L2P is still one of the top methods.

3.4.2 Robustness analysis. L2P is a two-stage method consist-
ing of a pairwise learning algorithm in the first stage and a voting
algorithm in the second stage. Previously we showed that voting
itself is a maximum likelihood estimation, therefore the performance
of L2P is highly relying on the performance of pairwise relation-
ship learning. Here, we investigate the robustness with respect to
classification error in Stage 1 of L2P.

To quantify the error tolerance of “voting” and estimation for the
new instance (Stage 2) of L2P, we conduct a set of experiments
where we introduce errors on predicting pairwise relationships. Here
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Figure 3: Predicted outcomes are compared with respect to underlying true distribution. Visualization of Q-Q plot points the part
of the distribution leading the greatest deviation. Outcomes of L2P reproduce underlying distribution closely at the both lower and
higher quantiles comparing to other methods. L2P demonstrates one of the best methods aligned with the true distribution and
produce minimum deviation at the lower and higher quantiles. RankSVM produces small deviation on the high end as well but it
generally has larger deviation in the low end comparing to L2P.

Table 2: Kolmogorov–Smirnov (KS) statistic and Earth mover distance (EMD). We measure KS statistic and EMD to compare
prediction distribution and the actual distribution. We also highlight best two models for each measure. We can see that across
various datasets, L2P is always among the top 2 of lowest KS statistic and EMD across different datasets. Other approaches are not
consistent across various datasets.

Method Fiction Nonfiction Art COMPAS Synthetic
KS EMD KS EMD KS EMD KS EMD KS EMD

L2P 0.058 4136 0.059 1334 0.068 20680 0.129 113 0.063 0.78
kNN 0.084 5809 0.090 2880 0.102 30718 0.169 171 0.067 0.81
KR 0.082 6137 0.096 3003 0.117 33194 0.198 166 0.100 1.13
HLR 0.092 6437 0.077 2958 0.195 36268 0.182 210 0.115 1.22
NN 0.076 5105 0.089 2643 0.112 32400 0.135 118 0.098 0.65
XGBoost 0.073 4761 0.108 2749 0.118 31762 0.214 188 0.097 0.80
RankSVM 0.098 1515 0.093 723 0.105 10127 0.126 64 0.077 0.49
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Figure 4: Predicted outcomes CCDF are compared with respect to underlying actual values CCDF. We select methods that are ranked
top 2 at least twice using KS and EMD. Visually, for most of the datasets RankSVM has the closest distribution to the true distribution.
L2P is among the top 2 methods that have the closest distribution. However one has to note that having the closet distribution does
not necessarily mean the method has the best performance.

we simulate the pairwise relationship error with two mechanisms: (i)
random error: constant probabilityp = pc flips the label for each pair,
(ii) distance-dependent error: probability of error is proportional to
the true ranking percentile difference between items; here we use the
percentile of the ranking because the sizes of the datasets vary. We
define the flipping probability as pi j = e−α |ri−r j | , assuming it would
be easier to learn the pairwise relationship for items that are further
away. This is observed in our experiments as well. In nonfiction
data, we notice that more than 48% of the pairwise relationship error
occurs in item pairs that have a ranking percentile difference smaller

than 10. We can control the rate of errors introduced by the two
mechanisms by tuning pc or α .

In Figure 6, we present the overall performance (AUC) of L2P
when various degrees of errors are introduced to the system in Stage
1 for different datasets. First thing to notice is that if the pairwise
relationship has no error (see left panel of Figure 6 when classifier
accuracy is 1), L2P has an accurate prediction, showing that the
performance of the voting stage is only influenced by the quality
of the pairwise relationships learned by the model. Moreover, the
voting stage can actually compensate errors in pairwise relationships.
We observe that error tolerance is significantly high towards random
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Figure 5: Performance comparison using AUC scores of different methods on different datasets. L2P achieves the highest performance
rank on book datasets and obtains similar score on art dataset. It is the second highest method on COMPAS dataset. However, given
kurtosis score in Table 1, COMPAS is less heavy-tailed than the previous three datasets. Synthetic dataset is a simple dataset where
all methods achieves comparable performance. XGBoost (XGB) and neural networks (NN) provides acceptable accuracy as well.

error. That is, performance of L2P is stable until more than 45%
of the pairwise relationships are mistaken. For distance-dependent
mechanism to simulate errors, we observe robust performance for
up to 30% error in Stage 1 predictions resulting just 20% reduction
of the overall performance.
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Figure 6: Robustness analysis for varying degree of errors in-
troduced to the experiments by two mechanisms: random er-
ror mechanism (left) and distance-dependent error mechanism
(right). The x-axis is the classifier accuracy and y-axis is the
final AUC score. Across all the datasets we can see that L2P is
highly robust to random error: performance is stable until more
than 45% of the pairwise relationships are wrong. For distance-
dependent error, we observe up to 30% error in the classifier
leads to only 20% reduction of the overall performance.

3.4.3 Case studies. As mentioned earlier, one of the advantages
of L2P methodology is its interpretability. Here, we demonstrate
examples of model outcomes and how pairwise comparisons and
certain features leads to more intuitive explanations than what other
methodologies can provide.

First, let’s look at a case where L2P performs better than others.
We have the example of nonfiction book Why not me? by Mindy
Kaling published by Crown Archetype. Our prediction is about
218,000 copies while the actual sales is about 230,000. The key fea-
tures explaining the success of this particular book are the author’s
popularity (as measured by Wikipedia pageviews) and the previous
sales of author – 6,228,182 pageviews and about 638,000 copies,
respectively. However, performance of neural network leads to sig-
nificant under-prediction as its prediction of 27,000 sales is an order
of magnitude lower. While understanding the factors causing this

significant under-prediction is not clear, L2P can provide context of
its prediction. L2P places Why not me? between Selp-Helf by Mi-
randa Sings and Big Magic by Elizabeth Gilbert. Selp-Helf has the
author popularity as 1,390,000 and the author has no prior publish-
ing history, while Big Magic has the author popularity as 1,596,000
and previous sales as 6,954,000. We see our query instance Why not
me? has higher author popularity than Big Magic and Selp-Helf, but
since it has a lower publishing history than Big Magic, L2P places
it between these two books.

We also want to demonstrate an example case where L2P fails
to achieve accurate prediction. The nonfiction book The Best Loved
Poems of Jacqueline Kennedy Onasis by Caroline Kennedy under
Grand Central Publishing, with claimed publication year 2015 in
Bookscan, is predicted to sell 53,000 copies while the actual sales is
180 copies in the dataset. After an extensive analysis, it turns out that
the book was initially published in 2001 and was a New York Times
bestseller, which L2P captures its potential and predict high sales.
Therefore this incorrect prediction is rooted in data error and our
overprediction can be attributed to the initial editions performance
as being a best seller. Neural network predicts 6,800 copies, though
closer to the actual sale 180.

4 RELATED WORK AND DISCUSSION
Related research can be divided into three categories: (1) Learning
to rank methodologies which rank list of instances into ordinal
outcomes, (2) regression for rare events with heavy-tailed outcomes,
and (3) methods addressing insufficient training data.

Learning to rank methodologies. Although L2P is designed for
predicting heavy-tailed outcomes, methodological contributions show
some parallels with the existing ranking algorithms. Cohen et al. [10]
proposed a two-phase approach that learns from preference judg-
ments and subsequently combines multiple judgments to learn a
ranked list of instances. Similarly, RankSVM [20] is a two-phase
approach that translates learning weights for ranking functions into
SVM classification. Both of these approaches have complexityO(n2),
which is computationally expensive.

In real-world applications like search engines and recommenda-
tion systems, systems provide ranked lists tailored to users and their
queries [1, 5, 20]. In some cases, mapping those preferences into an
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ordinal variable leads to better user experience. Such tasks require
the use of regression and multi-class classification methods [18].

Heavy-tail regression. Regression problems are known to suffer
from under-predicting rare instances [22]. Approaches proposed to
correct fitting models consider prior correction that introduces terms
capturing a fraction of rare events in the observations and weighting
the data to compensate for differences [28, 32]. Hsu and Sabato [19]
proposed a methodology for linear regression with possibly heavy-
tailed responses. They split data into multiple pieces, repeat the
estimation process several times, and select the estimators based on
their performance. They analytically prove that their method can per-
form reasonably well on heavy-tailed datasets. Quantile regression
related approaches are proposed as well. Wang et al. [38] proposed
estimating the intermediate conditional quantiles using conventional
quantile regression and extrapolating these estimates to capture the
behavior at the tail of the distribution. Robust Regression for Asym-
metric Tails (RRAT) [35] was proposed to address the problem of
asymmetric noise distribution by using conditional quantile estima-
tors. However, these regression techniques have limited capability
in capturing non-linear decision boundaries.

Imbalance Learning. Data imbalance, as a common issue in ma-
chine learning, has been widely studied, especially in classification
space. In [4], the problem of imbalance learning is defined as in-
stances have different importance value based on user preference.
There are in generally three categories of methods tackling this
problem: data pre-processing[6, 16], special-purpose learning meth-
ods [29, 36] and prediction post-processing [3, 34]. However, one
should notice that learning heavy-tailed distributed attributes is dif-
ferent from imbalance learning: in most imbalance learning, there is
a majority group and a minority group, but within group items are
mostly homogeneous; however in heavy-tailed distribution, there is
no clear cut to define majority/minority group and even if forcing a
threshold to form majority/minority group, within each group, the
distribution is still heavy-tailed. Additionally, one need to choose a
pre-defined relevance function for a lot of methods designed in this
space.

Efficient algorithm for pairwise learning. In L2P, pairwise learn-
ing approach enhances model performance by constructing quadrat-
ically more training instances and presenting rare instance more
frequently in comparison with all other instances. Such learning
task leads to O(n2) complexity. However, in real practice, n2 com-
parison is not necessary, and one can improve the scalability of the
approach by reducing the number of pairs to be trained on to get
comparable performance. We tested a naive approach based on the
intuition that pairs which are further away are easier to be learned.
For this efficient algorithm, we have two parameters: ns denoting
the number of samples to compare with for each instance and k de-
noting the number of instances that we consider as neighbors to each
instance. The efficient algorithm will take all neighboring instances
and sample ns − k non-neighboring instances for comparison for
each instance. The intuition behind this efficient algorithm is that it
is easier for a classifier to judge the pairwise relationship between
instances that are far apart than instances that are closer to each
other. Our experiments with efficient implementation of l2P leads

similar outcomes and by sacrificing small accuracy we can reduce
the number of comparisons in the training phase to nsn << n2 pairs.

In literature, efficient methodologies were proposed to learn pair-
wise relations more efficiently than comparing all n2 pairs exhaus-
tively. Qian et al. proposed using two-step hashing framework to
retrieve relevant instance and nominate pairs whose ranking is un-
certain [31]. Similar approaches to efficiently search similar pairs
and approximately learning pairwise distance are proposed in the
literature for information retrieval and image search [7, 25, 27].

5 CONCLUSIONS
We presented L2P, our Learning to Place algorithm. L2P accurately
estimates heavy-tailed outcome variables; and it is robust and inter-
pretable. Through learning pairwise relationships, L2P preserves
the heavy-tailed nature of the outcome variables and avoids under-
prediction of rare instances. We observe the following:

(1) L2P yields the best performance in majority of cases as mea-
sured by ROC, Kolmogorov-Smirnov statistic, and Earth
mover distance. L2P consistently ranked among the top 2
models on learning outcome distributions that are the closest
to the target distributions. L2P has the highest predictive per-
formance on the book dataset, whose target variable (book
sales) is very heavy tailed.

(2) We demonstrate experiments on various datasets having heavy-
tailed outcome distribution. We select datasets exhibiting var-
ious range of values and degrees of kurtosis and prediction
tasks from different application domains. We notice that L2P
outperforms significantly on datasets that are more heavy-
tailed (e.g., sales of fiction and nonfiction books).

(3) L2P has robust performance against pairwise relationship er-
rors. Under random error setting, L2P can tolerate up to 45%
error in pairwise relationship prediction; and under distance-
dependent error setting, L2P only has a accuracy drop of 20%
with 30% of pairwise relationship error.

(4) L2P is an interpretable approach where one can investigate
the reason behind each prediction, and explore the placing of a
test instance to obtain more context. This is highly important
in markets such as book publishing and movie producing,
where executives need reasons to make huge investments.

Future work. L2P’s performance can be improved by slightly
modifying its stage II. Currently, we are using the midpoint of the
assigned bin as the predicted value for the test instance. This heuristic
can introduce larger errors if the bin width is large. An alternative
approach is to use a weighted average between neighboring bins for
the test instance’s predicted value.

Reproducibility
The Python implementation of L2P method is freely available at
https://github.com/xindi-dumbledore/L2P.
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